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Abstract

A standard concern with long term longitudinal studies is that of attrition over time. Together
with initial non-response this typically leads to biased model estimates unless a suitable form of
adjustment is carried out. The standard approach to this has been to compute weights based
upon the propensity to respond and to drop out and then carry out weighted analyses to
compensate for response bias. In the present paper we argue that this approach is statistically
inefficient, because it drops incomplete data records, is inflexible, and in practice gives rise to
undue complexity involving a proliferation of weighting systems for different analyses. Instead
we set out an alternative approach that makes use of recently developed imputation procedures
for handling missing data and show how this can be used to improve the quality of the statistical
analysis. An example analysis is given using the Longitudinal Study of Australian Youth (LSAY).
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Introduction studies, at any given occasion the characteristics of
subsequent losses will be known and these can be
compared with those who are followed up. If biases
are detected then suitable weights can be

Attrition in longitudinal studies is typically
viewed as a serious problem for two reasons. First,
the loss of individuals over time will often result in a

sample size, after a few occasions or ‘sweeps’, very introduced to compensate for this, and this is the
much smaller than the initial sample size. For those  traditional approach to dealing with attrition.
analyses that utilise data at more than one The present paper sets out a general model-
occasion, the use of only those individuals with data ~ Pased approach to dealing with attrition in
at all such occasions in the analysis will result in a longitudinal studies. It does this by embedding the

loss of efficiency. We use the term ‘attrition’ to  Problem within a general approach to handling

mean any pattern of loss of individual records over missing data and the procedure will, in principle,
time, including those cases where individuals may handle both the loss of individual records over time

return to a study after missing measurement and the loss of individual data items, as well as
initial non-response at wave 1. Further, this

occasions.

Secondly, loss may not occur at random so that approach provides efficient estimates based upon a
the remaining sample may be biased with respect one-pass Markov Fhaln Monte _ Carlo (MCMC)
to the variables being analysed. In longitudinal algorithm that avoids the creation of multiply

imputed data sets.
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Data

These procedures are applied to a long term
study the “Longitudinal Study of Australian Youth’
(LSAY) with up to 12 waves of data collection. This is
a study that is tracking the pathways of young
Australians as they move from school to further
study, work and other destinations. Data are
collected on variables related to education, training,
work, financial matters, health, social activities and
attitudes. LSAY started in 1995 by sampling year
nine students, average age 14.5 years, in Australian
secondary schools and following them up every
year on a further 11 occasions (LSAY, 2013). In the
present paper we analyse the second cohort
commencing in 1998 using data up to wave 6 in
2003. The principal aim of the paper is to explore
ways in which the richness of the dataset can be
utilised efficiently, in the light of extensive non-
random sample attrition over time. We concentrate
on a single outcome, whether or not the
respondent is in part time or full time study and
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relate this to a number of characteristics. A series of

reports by Sheldon Rothman presents basic
tabulations for outcomes up to wave 6 (Rothman,
2005).

Australia has six states and two territories with
very unequal population sizes. The sample design
used in LSAY is one where there was oversampling
from some smaller states and territories leading to
unequal student selection probabilities (table 1).
Thus a set of sample design weights was derived so
that inferences could be made to the actual
Australian population. For every child in a school
the weights are equal so that we can treat this as a
single level weight in any weighted analyses. In
addition the study provides weights that attempt to
control for non-random attrition. A detailed
discussion of how to derive such weights can be
found in Plewis (2007).

Table 1 shows the characteristics of the sample,
including the distribution by state. The initial
sample consists of 296 schools.
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Table 1: Characteristics of 1998 LSAY cohort

Unweighted sample

All Australian

schools
Average age of respondents 30 /6/1998 (yrs) 14.5
Total no of respondents 14117
State/territory (%) New South Wales 24.0 32.8
Victoria 20.9 235
Queensland 22.0 20.1
South Australia 8.8 7.8
Western Australia 12.0 10.8
Tasmania 5.1 2.7
Northern Territory 3.3 0.9
Australian Capital Territory 4.0 1.9
Sex (%) Male 51.2
Female 48.2
Unknown 0.6
Indigenous status Indigenous 3.1
(%) Non-Indigenous 96.9
Geographic region Metropolitan 60.0
(%) Regional 22.4
Rural and remote 17.5
Country of birth (%)  Australia 85.0
Other 15.0
School sector (%) Government 63.0
Catholic 221
Independent 14.9

Source: LSAY - Longitudinal Surveys of Australian Youth, Y98 cohort to 2009, released April 2010, updated

January 2011.

Since the corresponding sample weights apply at
the state level, we can effectively eliminate the
need for weights by explicitly fitting state (as a
series of dummy variables) in our models. Only if
we wish to provide country level estimates will we
then need to marginalise over the state
distributions, but we do not consider this at the
present stage. In fact, the use of weights does not
change any of our inferences very much. Ignoring
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weights and not fitting effects for state will provide
inferences for a (hypothetical) population where
the state population sizes are proportional to the
chosen state sample sizes.

In all our subsequent models we have also
studied whether there are interactions among the
explanatory (predictor) variables and found little
evidence for these, so that they will be omitted.
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Table 2. Percentages of original sample of 14117 year 9 students in 1998 remaining at

waves 2-6

Year (wave)

Per cent remaining

1999 (2) 65.8
2000 (3) 67.6
2001 (4) 62.2
2002 (5) 55.0
2006 (6) 48.9

As table 2 shows the attrition is considerable,
especially in the first year of the study with just 49%
remaining by wave 6, and it is clearly necessary to
make adjustments for this. We note that attrition is
not completely monotonic with some students
returning to the study. This will not affect the
estimation model.

The LSAY user guide (LSAY, 2013) also discusses
deriving weights to compensate for non-random
attrition over time in the cohort. Weighting,
however, is not entirely satisfactory (Goldstein,
2009) since it will in general require a different set
of weights to be computed for every different
combination of waves entering any given
(longitudinal) model and this is not practically very
feasible. What LSAY itself provides is essentially
only weights that correct the data at each wave
separately. Thus these will allow adjustment for
cross sectional analyses at each wave but not for
longitudinal analyses. In any case these weights are
only computed based on overall achievement
(average of student outcomes on tests of
mathematics and reading comprehension) and
gender at wave 1. Plewis (2007) proposes an
extension of this by computing a set of weights
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specific for each of a number of longitudinal
analyses involving different combinations of
occasions or waves and different sets of variables.
Such approaches are intended to deal with the
problem of biases that may arise from differential
attrition. In the present paper we are additionally
concerned with efficiency, and in particular the loss
of efficiency that is implicit in such weighting
procedures, as we explain below.

Modelling the probability of participation in
further and higher education

As noted, our principal aim in this article is
methodological, namely to explore an alternative
approach to weighting to improve efficiency. A
secondary aim is to explore factors that predict the
probability of participating in further or higher
education after school. To address the
methodological issue, in the present analysis we are
only considering two time points, so that we can
use weights based upon the probability of
remaining in the sample at wave 6 as described
below. Inspection of the data shows that other
variables are associated with attrition, as shown in
table 3.
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Table 3. Variables predicting the probability of remaining in the sample at wave 6. Two
level model. Reference categories in brackets. Probit link function. 9027 out of 14117

cases used.

Parameter Estimate Standard error
Intercept -0.617 0.050
Female (male) 0.111 0.030
Catholic (Government) school 0.179 0.050
Independent (Government) school -0.019 0.059
Maths score year 9 0.023 0.004
Reading score year 9 0.030 0.004
Non-Australia country of birth of -0.116 0.031
mother (Australia)

SES ANU3 score father 0.0022 0.0007
Level 2 variance 0.060 0.009

We see that additionally to the test scores and
gender, country of birth of mother, type of school
and father’s socioeconomic status (SES) are
predictors of attrition. We shall be using these
variables in subsequent analyses either fitting into
the model or using in the imputation model to
correct for attrition bias. Adding some other terms
in this model such as home language (English/other)
does not add to the prediction so we will use the
above variables as standard.

One way to utilise the results in table 3 is to use
the inverse predicted probabilities of inclusion as
weights when modelling wave 6 outcomes in order
to correct for any attrition bias. A problem with
such an analysis is that it is based only upon the
students who remain at wave 6 and hence does not
increase efficiency, especially as the predictors in
table 3 are also those used in our model of interest
given in table 4.

The methodological approach we use as an
alternative to weighting is a recently proposed
extension of multiple imputation (Goldstein,
Carpenter, & Browne, 2014). In longitudinal data
Goldstein (2009) discusses procedures for handling
attrition and item missing data in longitudinal
studies and contrasts weighting with multiple
imputation. Seaman and White (2014) discuss the
use of inverse probability weighting to adjust for
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biases that may arise when values are missing not
at random, where the weights are derived from a
model that predicts the probability of an individual
having no missing values in the model of interest.
Both these latter two papers point out that the
weighted analysis uses only individuals with
complete cases. For this reason, apart from issues
of bias, imputation is generally recognised to be
more efficient and the statistically most satisfactory
method for handling attrition and in fact any type of
‘missing’ data (Moodie, Delany, Lefevre, & Platt,
2008). Carpenter and Kenward (2012) also discuss
this and in particular consider the question of bias
reduction and increasing efficiency using a
combination of multiple imputation and inverse
probability weighting, doubly robust estimation,
although in the present case there is little to be
gained since the prediction of the weights utilises
the same variables as are in the model of interest.

In the present paper we demonstrate the
increase in efficiency from using imputation. A
particular advantage of imputation is that, in
addition to attrition, nonresponses to individual
guestions can also be incorporated
straightforwardly (see Goldstein, 2009 for a
discussion). In our final analyses we will compare
imputation with a complete cases only model, with
and without weighting. We shall be utilising a
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recent development in imputation that obviates the
need for multiply imputed datasets and allows quite
general models with missing data, as described
below. Software for this has been developed by the
Centre for Multilevel Modelling in Bristol and
specifically the STATJR software package (STATIR,
2015), Alternative imputation methods, notably
‘chained equation’ procedures, are based upon
multiple imputed datasets and are unable properly
to handle functions of variables having missing
data, such as power and interaction
terms (Goldstein et al., 2014).

The imputation algorithm

The method described by Goldstein et al. (2014)
extends the standard joint model for multiple
imputation procedure (Carpenter & Kenward, 2013)
by obviating the need to produce a set of multiply
imputed datasets and also allows interaction and
polynomial terms in the model of interest. It is a
one-pass method using a single MCMC algorithm
and is fully Bayesian with a faster implementation in
software. The following is a simple summary of the
procedure, avoiding undue technicality.

For simplicity consider a single level model of
interest where the response and explanatory
variables have a joint normal distribution. If there
were no missing data then this can be readily fitted
using standard multiple regression, either via
maximum likelihood or in a Bayesian model, for
example with default diffuse prior distributions.
Consider the simple regression, joint model

Y =B+ B1X + eyx
X = ay + ex
(1)

The first line of (1) is the usual regression model
and the second line specifies a model for the
explanatory variable X. The residual terms express
the usual conditional distribution Y]X and the
distribution for X itself. Note that, unlike in standard
linear regression where it is not needed, we have
explicitly introduced a distribution for X, since this
will be required when we have missing data in this
predictor. Where there are missing values in the
response the record is omitted, although where
there are several responses in a multivariate model
we would impute missing responses where other
responses are present. It is assumed that ey, ey|x
are independent.

We initiate a MCMC algorithm, with suitable
starting values, that at each iteration uses a
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‘metropolis’ step, to propose, for each missing
value in X (or Y in the multivariate case), a value,
which is used in (1) to update both lines if accepted
using the implied likelihood values. Suitable starting
values can be derived from the complete cases. For
each missing value, in turn, the Metropolis step will
accept a proposed value based upon a comparison
of the joint likelihood for X and Y based respectively
on the current and proposed value. Where there
are several X variables, the second line of (1) will
express a conditional relationship among the X
variables for each one in turn.

Model (1), with several predictors, is readily
generalised to several explanatory variables and to
further hierarchical levels or cross classifications. If
there are interactions or polynomial terms in the
model of interest these are only present in the first
line of (1) and so are easily incorporated. Where we
have non-normally distributed variables we adopt a
‘latent normal’ transformation that introduces
additional steps in the algorithm to sample from
underlying normal distributions: for a binary
variable this is the usual probit model, and is used
in our models. Note that the requirement for
compatibility (congeniality) of the imputation
model and the model of interest in standard
multiple imputation is automatically satisfied using
this algorithm. One of the assumptions made in
imputation models is that, conditionally on the
variables included in the imputation component,
any propensity to missingness is effectively random,
the so called Missing at Random (MAR) assumption.
We may also include auxiliary variables, not
required in the model of interest, in the imputation
component of the joint model where these are
needed to ensure MAR. Full details are given by
Goldstein et al. (2014), including choice of prior
distributions.

Our subsequent analyses, therefore, include all
the variables from table 3 associated with attrition.

Predicting education and training participation
at wave 6

Our model of interest is a comparison between
those in tertiary education currently studying part
time or full time, and those not.

The model of interest is
g(mij) = XiB +

Xij
T = f_oéﬁ ¢ (t)dt

u;~N(0,07) ()



Joy Cumming, Harvey Goldstein

Handling attrition and non-response in longitudinal data...

where 7;; is the probability that the ith student in
the jth (1998) school is in tertiary education, and
¢ (t) is the standard normal distribution with g the
probit link function, relating this probability to the
set of covariates listed in table 4. The subscripts i, j
index students and schools respectively. The probit
function rather than the logit is convenient for
modelling  with missing data and allows
interpretation of parameters on an underlying
standard normal (N(0,1)) scale.
The imputation model can be written, excluding

subscripts, as

X*~MVN(aZ,Qyx)
(3)

This is a two level multivariate normal model where
the responses are the predictors, apart from the
intercept and school type, Z, where there are no
missing values, in table 4. For the maths and
reading scores, these are already normalised. For
the remaining binary variables the X* are obtained

using a step in the algorithm that randomly samples
from the underlying ‘latent’” normal distribution
corresponding to the binary variable. The joint
model is thus the combination of (2) and (3).

We have explored a number of analyses with
different predictors and table 4 presents a final
fitted model that contains a set of predictor
variables that jointly predict propensity to remain
studying. Gender is included for completeness. We
looked at student’s country of birth, father’s
country of birth and also student location in
urban/semi urban/rural region and these had small
effects and have been omitted. The continuous
ANU3 score is used for SES status as recommended
by Marks (1999). In addition to variables shown in
table 3 on probability of remaining in the sample at
wave 6, two additional variables, Home language
not English (English), and mother’s SES, are in the
model of interest.

Table 4. Full or part time study in 2003 by student, parental, environmental and school
characteristics in year 9, 1998. MCMC estimates with burnin=5,000, iterations=25,000.
Listwise deletion with 3407 out of 14117 cases used. Two level model. Reference
categories in brackets. Single level estimates in brackets.

Parameter Estimate Standard error
Intercept -0.938 (-0.952) 0.098 (0.088)
Female (male) 0.052 (0.053) 0.047 (0.046)
Catholic (Government) school 0.182 (0.174) 0.062 (0.052)
Independent (Government) school 0.236 (0.222) 0.080 (0.070)
Maths score year 9 0.049 (0.048) 0.006 (0.006)
Reading score year 9 0.024 (0.023) 0.006 (0.006)

Non-Australia country of birth of
mother (Australia)

Home language not English
(English)

SES ANU3 score father

SES ANU3 score mother

Level 2 variance

0.185 (0.181)

0.412 (0.408)

0.0049 (0.0041)
0.0025 (0.0027)

0.034

0.059 (0.058)

0.119 (0.115)

0.0011 (0.0011)

0.0014 (0.0013)
0.016
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The results in the above model are not
unexpected. Country of birth of mother outside
Australia is associated with a greater propensity to
remain studying and this could be explored further
in terms of actual country of origin.

Being in Catholic or independent schools likewise
is positively associated with increased propensity to
remain studying, as is having a main language in the
home that is not English, and having high maternal
and paternal occupational status.

We see that the school level variance is 0.034
with an equivalent standard deviation of 0.18. This
is on a standard normal scale and is relatively small.
Omitting the school level we have also fitted a
single level model whose estimates are given in

brackets and it can be seen that the inferences are
almost identical. Thus the actual school attended in
1998 appears to have little effect on propensity to
be studying five years later. The overall percentage
studying is 61% and a variance component analysis,
just fitting an intercept term in the model gives us
an estimate for the between school variance
(standard deviation) of 0.121 (0.35) so we see that
most of the school effect is accounted for by the
predictor variables.

The main methodological problem with this
analysis is that the effective sample size is only 3407
out of a possible 14117 (24%) of all cases. In
particular 33% of father’s and 45% of mother’s SES
are missing (table 5).

Table 5. Percentage of missing values for selected variables

Studying full or part time at wave 6 51.1
Sex 0.6
School type 0

Maths score year 9 2.3
Reading score year 9 2.5
Country of birth of mother 4.7
Mother’s SES ANU3 score 44.7
Father’s SES ANU3 score 335

Cases with any missing data are omitted from
the analysis. Thus, even if we had appropriate
weights that corrected for any biases we would
still have a very reduced efficiency due to the fact
that only 24% of the sample cases can be used.

We demonstrate this in table 6 by repeating
the analysis in table 4 with one that uses the
inverse probability weights derived from table 3
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where we predict the probability of remaining in
the sample until wave 6. Bayesian models do not
allow us to incorporate weights so that the
estimates are second order quasi-likelihood
estimates (Goldstein, 2011) which do approximate
very closely, in the unweighted case, to the
Bayesian MCMC estimates.
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Table 6 Full or part time study in 2003 by student, parental, environmental and
school characteristics in year 9, 1998. Second order PQL (Quasi-likelihood)
estimates. Listwise deletion with 3,407 out of 14,117 cases used. Two level model.
Reference categories in brackets. Standard errors in brackets

Parameter Unweighted Inverse probability
estimates weighted estimates

Intercept -0.942(0.093) -0.927(0.095)

Female (male) 0.054(0.047) 0.040(0.047)

Catholic (Government) school
Independent (Government)
school

Maths score Year 9

Reading score Year 9
Non-Australia country of birth
of mother (Australia)

Home language not English
(English)

SES ANU3 score father

SES ANU3 score mother

Level 2 variance

0.184(0.057)
0.232(0.090)

0.050(0.006)
0.024(0.006)

0.184(0.060)

0.412(0.120)

0.0050(0.0011)

0.0026(0.0013)

0.034(0.014)

0.209(0.057)
0.230(0.090)

0.050(0.006)
0.024(0.006)
0.177(0.061)

0.409(0.121)

0.0048(0.0011)

0.0025(0.0013)
0.036(0.014)

We see that the weighted and unweighted point

estimates are very similar, with virtually identical

standard errors.

In the next model, in table 7, we have used our

imputation procedure to both adjust for bias and

utilise all the information in a statistically efficient

manner.

Incorporating missing data using imputation

Out of the total sample, 51% are not present at
wave 6 and hence missing the response in the
model of interest, ‘in full or part time study’, which
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is available for all those remaining in the study. In
the present case, even though we fit only the
sample of 6901 who remain at wave 6, we do
actually obtain results where the parameter
estimates and standard errors are essentially the
same as fitting the full data, that is, imputing
responses for those not present at wave 6. This is to
be expected since where the response, in a model
with covariates, is missing, there is no further
information available from such records.
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Table 7. Full or part time study in 2003 by student, parental, environmental and school
characteristics in year 9, 1998. Missing data model. MCMC estimates with burnin=500,
iterations=2,500. Two level model. Reference categories in brackets. Single level estimates

in brackets. Sample size=6,901.

Parameter Estimate

Standard error

Intercept

Female (male)

Catholic (Government) school
Independent (Government) school
Maths score year 9

Reading score year 9
Non-Australia country of birth of
mother (Australia)

Home language not English

-1.040 (-0.951)
0.058 (0.047)
0.210 (0.159)
0.255 (0.214)
0.049 (0.051)
0.028 (0.026)
0.179 (0.186)

0.457 (0.497)

0.065 (0.057)
0.034 (0.032)
0.047 (0.040)
0.057 (0.049)
0.004 (0.004)
0.004 (0.004)
0.040 (0.040)

0.089 (0.072)

(English)
SES ANU3 score father
SES ANU3 score mother

Level 2 variance 0.036

0.0046 (0.0045)
0.0025 (0.0018)

0.0009 (0.0009)
0.0010 (0.0006)
0.009

While there are some small differences in the
parameters estimates, notably for school type, the
reading score, home language and father’s SES, the
main difference lies in the considerable reduction in
standard errors. These reductions are of an order
up to about 50%, reflecting the efficiency gain from
the imputation-based modelling. Fitting the
imputation model is not onerous, the two level
model took approximately 80 minutes to fit, on a
2.4 Ghz PC running windows 7.

Discussion

The Longitudinal Study of Australian Youth
represents a major investment in data collection
over a 12 year period to track the fortunes of
students from school year 9 annually into early
adulthood. In the present paper we have explored a
very limited set of variables looking at antecedents
of whether in the years after leaving school, the
students are still in full or part time education. We
find that test scores, parental country of birth,
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home language and SES all affect the propensity to
be studying.

The particular focus of the paper, however, lies
in its methodology. By wave 6 half the students
who were sampled originally in wave 1 had left the
study, and the propensity to leave was not random.
We have shown how the use of complete cases,
whether using inverse probability weights or not,
results in estimates that are considerably less
efficient than a fully imputation based approach. In
the present case bias appears not to be an issue
since neither the weighted analysis nor the
imputation analysis lead to very different estimates
from the unweighted complete cases analysis.

More generally, our analysis illustrates the
usefulness of a missing data approach to both
missing data item values and dropout. When there
are a relatively small number of complete cases it is
not efficient to base an analysis solely on such
cases. Utilising weights in a complete cases analysis
may provide a means of correcting potential biases,
but where such weights, as in the case of attrition,
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are derived from observed data at wave 1 (or later)
we show that greater simplicity and greater
statistical efficiency can be obtained by an
imputation based approach that incorporates all
the observed data in a single model.

The assumption of missingness at random is an
important one. To deal with non-random attrition in
a weighting approach we would normally seek to
satisfy this by incorporating ‘auxiliary’ variables
when modelling the propensity. In an imputation
approach we would incorporate such auxiliary
variables in the imputation component of the

significant predictors of dropout by wave six are
also in the model of interest.

In some longitudinal studies the data analyst may
be confronted with data that contain design or non-
response weights of unknown provenance. In such
cases, unlike the present, these weights will
generally need to be incorporated into both the
imputation component and that for the model of
interest. Within a fully Bayesian framework it is not
clear how to do this, and this problem is currently
the focus of further research. Carpenter and
Kenward (2012) provide some guidance.

model. In our analysis all the variables that are
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