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Appendix 1: Practical considerations 

In the main body of this article, substantive and methodological aspects of SA and LCA were 

discussed. Here, we will focus on some practical issues that arise from applying these 

models. Two aspects of the sequence data set – the size of the data set and sequence length 

– affect the choice of typology techniques, the computation duration and the computation 

capacity requirements. In this Appendix, we will cover the effect of each of these two 

aspects on SA and LCA typologies. 

 

To conduct SA, a data set of size 𝑁 (the total number of respondents) will generate a 

distance matrix of size 𝑁 × 𝑁 and therefore computation time and memory requirement 

will increase quadratic with 𝑁. For big data sets, the memory requirements may easily 

exceed the capacity of a standard PC. For LCA, the memory requirements are only 

proportional to 𝑁 and a bigger data set will facilitate the convergence of the estimation 

algorithm. Therefore, bigger data sets will not normally pose a computational problem in 

terms of memory requirements or computation time for an LCA. 

 

Sequence length, i.e. the total number of states contained in a sequence, may be a problem, 

both for SA and for LCA. 

 

For SA it may pose a computational problem since sequence comparison, i.e. the 

computation of distances, requires computation time that increases at least quadratic with 

sequence length. That means that doubling the length will increase computation time 

required by a factor of four. So, if, like in OM, the states are repeated to express duration, a 

15-year long sequence with monthly observations will consist of 180 states. Such pairs of 

sequences require quite some processing  time to count the minimum number of edits 

required (for details of the OM- algorithm, the reader is referred to Brzinsky-Fay et al. 

(2006)). However, some distance metrics like SVRspell (Elzinga & Studer, 2015) and OMspell 



(Studer & Ritschard, 2016), treat the durations as properties of the states to the effect that 

the sequence length is substantially reduced, mostly by a factor of more than 10. 

 

Long sequences also pose a computational problem to LCA as, over time, each observation is 

a realisation of a separate independent variable of which the class-conditional probability 

distribution over the distinct states has to be estimated. With 𝑅 latent classes, 𝐽 distinct 

states and 𝐾 observations per sequence, i.e. a sequence length of 𝐾, the number of 

parameters to be estimated is in the order of 𝑅 × 𝐽 × 𝐾 (see also Equation 1). Therefore, 

models with many latent classes applied to long sequences may require infeasible 

computational capacity. 

 

Another issue that may seriously affect the computational duration and the result of 

applying LCA, is the issue of convergence and local maxima of the log-likelihood function. 

The surface of the log-likelihood function 𝐿 to be maximised when estimating the 

parameters of the LC-model, is irregular and, depending on the parameters and the data, 

has many local maxima. The EM-algorithm (Dempster et al., 1977) used to iteratively 

maximise 𝐿 will always find a maximum on that surface but it might be very slow in closely 

approximating it (Wu, 1983). Furthermore, such a maximum may well be a local maximum 

that is quite smaller than the true, global maximum and there is no reliable method that 

avoids convergence to a local maximum. This can be problematic because in a local 

maximum, the parameter-estimates might be quite different from those that would have 

been found, had the global maximum been hit. EM works iteratively and it has to be 

provided with an initial guess of the parameters. At each iteration cycle, these guesses are 

updated until the increase of 𝐿 is negligible and this may well occur in the neighborhood of a 

local maximum. One way to try to circumvent this problem is to run the algorithm many 

times (in our study, 1000 runs per model were performed) with different initial guesses of 

the parameters and search for an ever-bigger value of 𝐿. In practice, such a random search 

will generate an increase of 𝐿. There are alternatives to such a random search (see e.g. 

Watson & Engle, 1983) but none of them is guaranteed to find the global maximum of 𝐿. 

Using the estimates that comprise a local maximum may imply that some of the sequences 

will be assigned to a latent class that differs from the one that would have been assigned 

with a better local maximum or the global maximum. Therefore, the results of an LCA will 



always suffer, to an unknown degree, of such uncertainties. Unfortunately, in practice, using 

many initial values to better approximate the global maximum of 𝐿 may be extremely time-

consuming. We encountered this problem when trying to find an optimum for the number 

of latent classes. LCA-software such as LatentGOLD (Vermunt & Magidson, 2005) and poLCA 

(Linzer & Lewis, 2011) automatically generates and tests different random start values, and 

therefore running the program many times can reduce the risk of ending up with a local 

maximum. Note that it appears unwise to assume that the results of a single run of any LCA-

program will produce a global maximum, even with a small number of latent classes. 

 

Appendix 2:  A heuristic bridge between SA and LCA 

As concisely explained in the section Latent Class Analysis, we propose an interpretation of 

the LC-model that implies that variation of the ordering of states is almost absent under the 

LC-model. Furthermore, we propose one extra assumption that bridges the difference 

between the probabilistic LC-model and the distance-oriented SA-approach. Thereto, we 

formally develop an idea on the stochastic interpretation of edit-distances that was 

suggested in Kruskal (1983, pp. 232-234). Similar ideas in the context of automatic data-

editing were proposed by Liepins (1980) and by Scholtus (2014) and in the field of speech 

recognition by Bahl and Jelinek (1975) and Ristad and Yianilos (1998). Below, we will develop 

Kruskal's sketchy proposal to relate the OM-distance to the likelihood of generating one 

sequence from another through a stochastic mutation process and use this development to 

relate SA- and LCA-based typologies of sequences. The Latent Class model and the Sequence 

Analysis approach are quite different. First, the LC-model is about unobserved probability 

distributions that characterise different groups of sequences while no such distributions play 

any role in the SA-approach. Furthermore, the LC-model expresses the probability of 

observing particular, individual sequences while in the SA-approach, only pairs of sequences 

and their distances are considered to construct a grouping of the observations. Distances 

have no place in the LC-model. So, connecting models as different as the SA-approach and 

the LC-model requires a few steps and assumptions. 

 

The first step in this process is to provide for an interpretation of the LC-model that involves 

an editing process and a template-sequence. Once this interpretation is established, the 



second step involves simplifying the model until we arrive at a direct connection between 

observation probabilities and the distances to the template sequence. 

Finally, in the third step we use a general property of distance metrics - the triangular 

inequality - to establish a simple relation between edit distances between pairs of 

sequences and the probability that such pairs have been edited from the same template, i.e. 

the probability that they stem from the same class.  

 

An edit-process interpretation of the LC-model 

Here, we revisit the LC-model in order to arrive at a more convenient interpretation of it. 

The LC-model states that individuals, in the form of encoded life courses or patterns of 

responses to test-items, each belong to distinct groups that are characterised by distinct 

probability distributions over some alphabet of states or responses. Let us denote the 

(𝑑 + 1)-sized alphabet as a set 𝐴 = {𝑎0, 𝑎1, ⋯ , 𝑎𝑑} wherein, for reasons to become clear, 

the symbol 𝑎0 is considered as ‘’empty’’. All observed sequences are constructed from this 

alphabet but do not necessarily contain all symbols available. So, given an 𝑛-long sequence 

𝑥 = 𝑥1 ⋯ 𝑥𝑛, we know that the subsequent states have been taken from 𝐴. Under the LC-

model, we hypothesize a set Θ = {𝜃1, ⋯ , 𝜃𝑘} of 𝑘 latent classes and each sequence is 

supposed to be generated from precisely one of these classes. Furthermore, the LC-model 

assumes that, given the sequence is generated from a particular class 𝜃ℓ, the consecutive 

symbols of the sequence are generated independently - the assumption of ``local 

independence''. Thus, under the LC-model, the probability of observing 𝑥 = 𝑥1 ⋯ 𝑥𝑛, given 

that 𝑥 comes from class 𝜃ℓ, can be written as 

𝑃𝑟𝑜𝑏(𝑥|𝜃ℓ) = ∏ 𝑃𝑟𝑜𝑏(𝑥𝑖|𝜃ℓ)                      (𝐴2.1)

𝑛

𝑖=1

 

As all symbols 𝑥𝑖  come from the alphabet 𝐴, the class 𝜃ℓ is characterised by the probability 

distribution 𝑃𝑟𝑜𝑏(𝐴|𝜃ℓ) = {𝑃𝑟𝑜𝑏(𝑎0|𝜃ℓ), ⋯ , 𝑃𝑟𝑜𝑏(𝑎𝑑|𝜃ℓ)}. Put more abstractly, a class is 

characterised by its relative size 𝑃𝑟𝑜𝑏(𝜃ℓ) and the sampling process through which it 

generates subsequent symbols from the alphabet. The sampling process is with 

replacement, has no memory and is governed by the distribution 𝑃𝑟𝑜𝑏(𝐴|𝜃ℓ). Estimating an 

LC-model thus amounts to estimating the class-sizes 𝑃𝑟𝑜𝑏(𝜃ℓ) and the conditional sampling 

distributions 𝑃𝑟𝑜𝑏(𝐴|𝜃ℓ). 



 

Let us now develop an interpretation of the LC-model that will allow us to connect 

observation probabilities to edit-distances. To do just that, we assign to each class 𝜃ℓ its own 

model- or template sequence 𝜏ℓ = 𝜏ℓ1, ⋯ , 𝜏ℓ𝑛 and an ``editor'' 𝐸ℓ that generates observable 

sequences by editing the unobservable, latent template 𝜏ℓ. The template might look like  

𝑎𝑎𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑏𝑏𝑎, 

while the edited version might look like 

𝑎𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏𝑏𝑏𝑐𝑐𝑏𝑏𝑐𝑐𝑎𝑎𝑎. 

We assume that this editor samples edit-operations and applies the operation sampled to 

the symbol encountered when processing 𝜏ℓ. The operations are limited to either deleting a 

symbol from 𝜏ℓ or inserting or substituting a symbol from the alphabet 𝐴. Thus, the editor is 

characterised by a matrix 

𝑬𝓵 = (

𝑝00 ⋯ 𝑝0𝑑

⋮ ⋱ ⋮
𝑝𝑑0 ⋯ 𝑝𝑑𝑑

) 

wherein 𝑝𝑖𝑗 denotes the probability that, when the editor encounters the symbol 𝑎𝑖, it will 

change it into the symbol 𝑎𝑗: 

𝑝𝑖𝑗 = 𝑃𝑟𝑜𝑏(𝑥𝑚 = 𝑎𝑗|𝜏ℓ𝑚 = 𝑎𝑖, 𝑬ℓ). 

Now the empty symbol 𝑎0 is convenient since if 𝑖 = 0 ≠ 𝑗, the edit is an insertion of 𝑎𝑗; if 

𝑖 ≠ 0 = 𝑗, the edit is a deletion and if 𝑖 ≠ 0 ≠  𝑗, the edit is a substitution and if 𝑖 = 𝑗, 

nothing changes. 

 

Clearly, so far, we did not add any assumption to the LC-model that has consequences for 

the probabilities, given class-membership, of the observed sequences. All we did was 

postulate the existence of editors that operate on different templates as an explanatory 

mechanism that generates the observed sequences. We did not touch the basic LC-model 

assumption that is embodied in the above Equation (A2.1). 

 

Simplifying the model 

When an LC-model fits the data well, we may expect that within classes, the observed 

sequences are quite similar. In our interpretation of the model, we would say that we expect 

that most observed sequences are quite similar to the templates from which they were 



generated. Hence we may expect that change is relatively rare. The reader notes that this is 

an interpretation that follows from assuming that the LC-model fits the data quite well: if 

the LC-model would not show a reasonable fit, it would not make much sense to study the 

connection between the LC-model and any other approach. Stated in terms of the entries of 

the matrix of edit-probabilities, this implies that all diagonal elements 𝑝𝑖𝑖 are close to 1 and 

that all off-diagonal entries are relatively small. A good approximation of this interpretation 

is to say that all 𝑝𝑖𝑖 are equal to some number 𝑝 close to 1 and that all entries 𝑝𝑖𝑗 are equal 

to some number 𝑞 that is relatively close to 0. So, we must have that 

𝑬𝓵
∗ = (

𝑝
𝑞

𝑞
𝑝

⋯ 𝑞
⋯ 𝑞

⋮ ⋮ ⋱ ⋮
𝑞 𝑞 ⋯ 𝑝

) ≈ 𝑬𝓵 

i.e. if the sequences within classes are quite homogeneous, the 𝑬𝓵 are well approximated by 

the simpler matrices 𝑬𝓵
∗ . 

 

The second assumption about the editing process is that the editor has no memory, i.e. at 

each position of the template, the editor samples an edit-operation according to the matrix 

𝑬𝓵
∗ . So, we assume that consecutive edits are independent of each other. The reader notes 

that this is an assumption that follows from the LC-model assumption of local 

independence; it is not an additional assumption that is chosen independently of the LC-

model.   

 

When the editor processes the template 𝜏ℓ, it creates an edit-path: a sequence of changes 

and non-changes to the symbols of the template. Assuming that the individual edit-

probabilities are specified by 𝑬𝓵
∗  and that the edits are independent, the probability of the 

whole path can be written as a multiplication of 𝑝's and 𝑞's: a 𝑝 for each position where 

nothing changes and a 𝑞 for all position were something is changed. If there are 𝑛𝑝 positions 

where no change is applied and 𝑛 − 𝑛𝑝 = 𝑛𝑞  positions where some edit is applied, this 

multiplication, i.e. the probability that this edit path is realised, can be written as  

𝑝𝑛𝑝 ∙  𝑞𝑛𝑞 . 

Of course, given some template 𝜏ℓ and some observable sequence 𝑥, there will be many 

different edit paths that will turn the template into the observable sequence. Let us denote 



the set of all edit paths that turn 𝜏ℓ into 𝑥 by 𝔼ℓ (𝑥) = {𝑒1, 𝑒2, ⋯ } and consider an arbitrary 

path 𝑒𝑖 from this set. Then there will be 𝑛𝑝(𝑖) locations where no edit will be applied in this 

path and 𝑛𝑞(𝑖) positions where some change will be affected. Hence the probability of the 

occurrence of this particular path will be  

𝑝𝑛𝑝(𝑖) ∙  𝑞𝑛𝑞(𝑖). 

Given the template 𝜏ℓ, the probability that 𝑥 will be generated depends on the probability of 

all paths in the set 𝔼ℓ (𝑥): 

𝑃𝑟𝑜𝑏(𝑥|𝜏ℓ) = ∑ 𝑃𝑟𝑜𝑏(𝑒𝑖)

𝑒𝑖∈𝔼ℓ (𝑥)

 

        = ∑ 𝑝𝑛𝑝(𝑖) ∙  𝑞𝑛𝑞(𝑖)

𝑒𝑖∈𝔼ℓ (𝑥)

 

     ≈ ∑ 𝑞𝑛𝑞(𝑖)

𝑒𝑖∈𝔼ℓ (𝑥)

 

 

The last approximation is justified by the ``fact'' that 𝑝 is close to 1, hence 𝑝𝑛𝑝(𝑖) must be 

close to 1 too. 

 

The reader notes that the bigger 𝑛𝑞(𝑖), the smaller 𝑞𝑛𝑞(𝑖) since 𝑞 itself is a small number. 

Hence the summands in the above approximation are small and the bigger the exponent, i.e. 

the longer the edit path, the smaller the contribution to the sum. This explains our 

assumption that there is a shortest edit path, say 𝑒∗ consisting of only 𝑛∗ edits, of which the 

probability dominates the last sum. If this assumption is correct, we must have that 

 

𝑃𝑟𝑜𝑏(𝑥|𝜏ℓ) ≈ ∑ 𝑞𝑛𝑞(𝑖)

𝑒𝑖∈𝔼ℓ (𝑥)

≈ 𝑞𝑛∗
                                    (𝐴2.2) 

This latter approximation is the key result of this subsection as it explicitly relates the 

probability of observing some sequence 𝑥 to the length of the shortest edit path that is 

required to generate the observed sequence from the template sequence 𝜏ℓ. This 

assumption is not a consequence of our interpretation of the LC-model, but follows from our 



attempt to connect a local-independence model to a distance metric that is based on some 

minimum (weighted) number of edits. The reader also notes that the simplification of the 

𝑬ℓ-matrix to 𝑬ℓ
∗ is not essential: it only considerably simplifies our notation. What is 

essential though, is the assumption that the diagonal elements are big, i.e. close to 1, and 

that the off-diagonal elements are very small, i.e. close to 0. 

The last step to be made is to connect this probability to an edit distance; the subject of the 

next subsection. 

 

From probabilities to edit-distance 

Our last challenge is to remove all references to edit-probabilities from the right-hand side 

of the last of the above approximations. This is accomplished by assigning a weight 

𝑤 = − log 𝑞 to each edit in the path, implying that 𝑞 = 𝑒−𝑤. Substituting this weighting into 

the last approximation yields 

𝑃𝑟𝑜𝑏(𝑥|𝜏ℓ)  ≈  𝑒−𝑤𝑛∗
= 𝑒−𝑤𝑑(𝑥,𝜏ℓ) 

wherein 𝑑(𝑥, 𝜏ℓ) denotes the OM-distance between the template and the observed 

sequence. This is the key-result, applied in the present context, of reasoning along the lines 

set out by Kruskal (1983): the likelihood of observing 𝑥 given the template is a decreasing 

function of the distance between 𝑥 and the template. The bigger the distance, the less likely 

it is that 𝑥 was generated from that template. 

 

Unfortunately, as the template cannot be observed, this result is not directly usable. 

However, the purpose of the analysis of the observed sequences, either through LCA or 

through SA, is to group sequences into more or less homogeneous classes such that 

sequences end up in the same group if they are similar. So we are interested in evaluating 

the relation between 𝑃𝑟𝑜𝑏(𝑥, 𝑦|𝜏ℓ) i.e. the likelihood that 𝑥 and 𝑦 were generated from the 

same template or belong to the same latent class, and the distances 𝑑(𝑥, 𝑦). So, we need to 

make one more step. 

 

Since the editor is assumed to have no memory, i.e. because of the local independence 

assumption of the LC-model, the observables 𝑥 and y are generated independently. Hence 

𝑃𝑟𝑜𝑏(𝑥, 𝑦|𝜏ℓ) = 𝑃𝑟𝑜𝑏(𝑥|𝜏ℓ) ∙ 𝑃𝑟𝑜𝑏(𝑦|𝜏ℓ) 



 

    ≈ 𝑒−𝑤(𝑑(𝑥,𝜏ℓ)+𝑑(𝑦,𝜏ℓ)) 

 

≤ 𝑒−𝑤𝑑(𝑥,𝑦) 

The last step derives from the fact that 𝑑 is a metric and thus satisfies the triangular 

inequality 𝑑(𝑥, 𝑦) ≤  𝑑(𝑥, 𝑧) + 𝑑(𝑧, 𝑦) for all triples 𝑥, 𝑦 and 𝑧 (see e.g. Elzinga & Studer, 

2014). Setting 𝑧 = 𝜏ℓ then yields the last inequality. 

 

This last inequality is our final result: the bigger the unit-cost edit-distance, the smaller (the 

upper bound of) the probability that the observables 𝑥 and 𝑦 stem from the same template, 

i.e. from the same latent class. This is a nice result as it implies that the grouping obtained 

through partitioning a distance matrix (SA) should roughly coincide with grouping that is 

obtained through LCA.  

 

This result, as presented here, is obtained through a simplified argument: it uses the simpler 

𝑬ℓ
∗ instead of the full 𝑬ℓ. This simplification forced us to consider unit-cost OM. However, 

had we chosen to use the full, non-simplified 𝑬ℓ, then we would have obtained a similar 

result for an arbitrary but metric cost-matrix. We do not present this extended argument 

here because of a lack of space and because it does not really add to our understanding of 

the heuristics. Of course, if in practice the structure of the edit-cost matrix is inappropriately 

chosen not to be metric, reasoning via the triangular inequality fails. Furthermore, the 

reader should be aware that this result is obtained through the assumption that there is one 

and only one shortest path whose likelihood dominates the sum of likelihoods of all possible 

paths. If this assumption is false, i.e. if there are many edit-paths that are suboptimal but 

almost as likely as the shortest path, the approximation is an underestimation of the true 

likelihood. Therefore, we investigate this assumption in some more detail in the next 

subsection. 

 

On the number of shortest edit paths or longest common subsequences 

In this subsection, we will make some remarks on the maximum number of shortest edit 

paths. To do so, we will be concerned with the dual problem of the number of longest 

common subsequences (lcs's). We know that the OM-distance with unit-cost, the so-called 



Levenshtein distance (Levenshtein, 1966), counts the number of symbols in either sequence 

that do not belong to an lcs of both sequences: the smallest number of edits required to 

turn the one sequence into a perfect copy of the other sequence. So, if there are many 

distinct shortest and short edit-paths, there must be many distinct lcs's and the reverse is 

also true: many distinct lcs's implies many distinct editing paths. We know that (Greenberg, 

2003) often the number of lcs's is quite big and we also know that (see Elzinga, 2014b) the 

maximum number of distinct lcs's that may exist for sequences of a given length increases 

exponentially with the length of the sequences. The maximum number 𝑓(𝑛, 𝑘) of 𝑘-long 

lcs's of two 𝑛-long sequences is given by 

𝑓(𝑛, 𝑘) = ∏ ⌊
𝑛 + 𝑖

𝑘
⌋

𝑘−1

𝑖=0

 

The latter equation generates a triangular table, a small part of which is shown in Table 1. 

 

Table 1: Part of the triangular table for the number 𝑓(𝑛, 𝑘) of 𝑘-long lcs's in pairs of 

𝑛-long sequences for 10 < 𝑛 ≤ 15 and 1 ≤ 𝑘 ≤  𝑛. 

𝑛/𝑘 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

11 11 30 48 54 48 32 16 8 4 2 1     

12 12 36 64 81 72 64 32 16 8 4 2 1    

13 13 42 80 108 108 96 64 32 16 8 4 2 1   

14 14 49 100 144 162 144 128 64 32 16 8 4 2 1  

15 15 56 125 192 243 216 192 128 64 32 16 8 4 2 1 

 

Table 1 shows the values of 𝑓(𝑛, 𝑘) for 10 < 𝑛 ≤ 15. For example, it is shown that the 

maximum number of 7-long lcs's for two sequences of length 𝑛 = 14 equals 128: 

𝑓(14,7) = 128. The reader might verify that 𝑓(20,7) = 1458.  What do these numbers 

imply? That multiple lcs’s are common among pairs of social science sequences? We don’t 

think so for a number of reasons. First, we note that the numbers in Table 1 are maxima; 

pairs of random sequences will, on average, have much less lcs’s. Second, within classes or 

clusters, pairs of sequences are quite similar and similar sequences will have relatively long 

lcs’s which are much less abundant than medium sized lcs’s (see Table 1). Finally, in most 

kinds of social science sequences, we observe two phenomena: changes of state are 



relatively rare as is variation in the order of states. These two phenomena imply that, 

especially within the same class or cluster, social science sequences are structured like 

𝑎𝑎 … . . 𝑎𝑏𝑏 … . . 𝑏𝑐𝑐 … . . 𝑐𝑑𝑑 … . . ∶ 

Thus, they consist of only a few long runs of the same state and variation mainly consists in 

variation in the lengths of consecutive runs. It is difficult to see how pairs of such sequences 

from the same class or cluster could have even a few distinct lcs’s. Rather, such pairs will 

have many distinct embeddings of the same lcs.  Therefore, while acknowledging that the 

above reasoning does not constitute a proof of the validity of the assumption of just one 

shortest, dominant edit path (Equation A2.2), we believe that it shows that this assumption 

is very plausible. 

 

So, from the above heuristics, we conclude that there is a conceptual bridge between SA 

and the LC-model: the idea that distinct latent classes can be envisaged as arising from 

distinct template sequences that are stochastically perturbed and that, therefore, one may 

expect that results obtained with either approach will roughly coincide. Mathematically, 

these heuristics only rely, beyond LCA’s assumption of local independence, on the 

assumption of a single, shortest edit path and numerically on the assumption that the 𝑝𝑖𝑖 of 

𝑬ℓ are “sufficiently” close to 1. If these assumptions fail, the heuristics lack relevance. 

Whatever the case, at present, we do not know of a more plausible narrative to explain the 

apparent correspondence between results obtained with LCA and results obtained with SA.   

 

 

 

 

 

 

 

 



Appendix 3: Code for Sequence Analysis with R-based tools 

############################## Section 1: sequence analysis 

############################ 

############################### install necessary packages 

############################# 

# TraMineR is a R-package for describing, summarizing, analyzing and rendering discrete 

sequence #data 

install.packages(TraMineR)  

require(TraMineR)  # load the TraMineR package for sequence analysis 

# The WeightedCluster library provides functions to cluster states sequences and weighted 

data. install.packages(WeightedCluster) 

require(WeightedCluster) # load the WeightedCluster package for cluster quality analysis 

# fpc package provides bootstrapping methods and statistics for clustering. 

install.packages(fpc) 

require(fpc) # load the fpc package for bootstrapping  

################################ set working directory 

############################### 

setwd ("replace this with your working directory") 

################################## load sequence data 

############################## 

load("data_monthly_sequence.RData") # replace RData with your own sequence data 

#################### here we start preparing the analysis with TraMineR 

################### 

data.lab <- c("Married", "Married with Children", "Single", "Single with Children", 



            "Union", "Union with Children") # 6 demographic events 

data.alph <- c("M","MC","S","SC","U","UC") # define the sequence alphabet with these 6 

events 

data.shortlab <- c("M","MC","S","SC","U","UC") # abbreviation of these 6 demographic 

events 

data.seq <- seqdef(data_monthly_sequence, states = data.shortlab, labels = data.lab, 

alphabet = data.alph) # creates a state sequence object with attributes such as alphabet 

and state labels 

######################### calculate sequence distance matrix c4.dis 

###################### 

############################# using optimal matching (OM) 

############################ 

####### insertion and deletion cost equals 4, substitution-cost is constant (default value = 

2) ###### 

data.dis <- seqdist(data.seq, indel = 4,method = "OM",sm = "CONSTANT") 

############################# other option see help file seqdist 

######################### 

############# here we apply hierarchical cluster analysis using Ward’s method 

############# 

hc.ward <- hclust(as.dist(data.dis), method = "ward.D") 

######### here we compare cluster quality between  2 and 8 clusters ########### 

mvad <- wcKMedRange(data.dis, kvals = 2:8,initialclust = hc.ward) 

######### here we apply bootstrapping for 7 clusters as an example ########### 

data.hc <- clusterboot(data.dis, distances = TRUE, clustermethod = disthclustCBI, method = 

"ward.D", k = 7) 



### here we perform data visualization for the cluster solution to gain substantive 

understanding ## 

###################### We take 7 clusters as an example ##################### 

#################### and require sequence index plots ##################### 

seqIplot(data.seq, group = data.hc$partition, border = NA, weighted = FALSE, sortv = 

"from.start") 

#################### sequence medoid plot for cluster number equals 7 

################### 

################## calculate sequence medoid for cluster number equals 7 

################# 

icenter <- disscenter(data.dis, factor(data.hc$partition),  medoids.index="first") 

seqiplot(data.seq[icenter,]) ## plot calculated medoid for the 7-cluster solution 

 

######################### Section 2: latent class analysis 

############################ 

############################### install necessary packages 

############################# 

# poLCA is a R package for latent class analysis and latent class regression models for 

polytomous  #outcome variables. Also  known as Latent Structure Analysis. 

install.packages(poLCA) 

require(poLCA) # load the poLCA package for latent class analysis 

################# we start preparing the latent class analysis using poLCA 

################### 

#################### We use the same dataset as in sequence analysis 

################### 



#################### rename the monthly sequence states chronologically 

################ 

names(data_monthly_sequence)[8:151] <- paste("m", 1:144, sep = "") 

#################### define variables in latent class analysis ################### 

var <- cbind(m1, m2, m3, m4, m5, m6, m7, m8, m9, m10, 

             m11, m12, m13, m14, m15, m16, m17, m18, m19, m20, 

             m21, m22, m23, m24, m25, m26, m27, m28, m29, m30, 

             m31, m32, m33, m34, m35, m36, m37, m38, m39, m40, 

             m41, m42, m43, m44, m45, m46, m47, m48, m49, m50, 

             m51, m52, m53, m54, m55, m56, m57, m58, m59, m60, 

             m61, m62, m63, m64, m65, m66, m67, m68, m69, m70, 

             m71, m72, m73, m74, m75, m76, m77, m78, m79, m80, 

             m81, m82, m83, m84, m85, m86, m87, m88, m89, m90, 

             m91, m92, m93, m94, m95, m96, m97, m98, m99, m100, 

             m101, m102, m103, m104, m105, m106, m107, m108, m109, m110, 

             m111, m112, m113, m114, m115, m116, m117, m118, m119, m120, 

             m121, m122, m123, m124, m125, m126, m127, m128, m129, m130, 

             m131, m132, m133, m134, m135, m136, m137, m138, m139, m140, 

             m141, m142, m143, m144)~1 

#################### here we perform latent class analysis ################### 

#################### with 7 latent classes as an example ################### 

## the number of random starting values  nrep may be changed 



m7 <- poLCA(var, data_monthly_sequence, nclass = 7, nrep = 500)  

### Getting model fit statistic BIC and relative entropy for latent between 4 and 8. 

#################### BIC calculated in a for loop ################### 

BIC <- NULL 

for (i in 4: 8) 

{ 

  m <- poLCA(var, data_monthly_sequence, nclass = i, nrep = 500) 

  BIC[i] <- m$bic 

} 

#################### relative entropy calculated in a for loop ################### 

entropy <- NULL 

for (i in 4: 8) 

{ 

  m <- poLCA(var, data_sts, nclass = i, nrep = 100) 

  entropy[i] <- poLCA.entropy(m) 

} 

# here we perform data visualization for the classification solution to gain substantive 

understanding  

###### data visualization of latent class analysis classification using TraMineR package 

######### 

###################### and use the 7-cluster solution as an example 

##################### 

class=m7$predclass 



#################### sequence index plot for class number equals 7 

##################### 

seqIplot(data.seq, group class, border = NA, weighted = FALSE, sortv = "from.start") 

#################### sequence model plot for cluster number equals 7 

################### 

seqmsplot(data.seq, group = class, border = NA, weighted = FALSE) 

 

######################### Section 3: Typology Comparison 

############################ 

############################### install necessary packages 

############################# 

# Software for multinomial log-linear models. 

install.packages(nnet) 

require(nnet) # load the nnet package for multinomial logistic regression analysis 

#################### load data of cluster and classification solution 

##################### 

#################### load data of background variable ##################### 

load("background.Rda") 

#################### load sequence analysis results ##################### 

load("Sequence_solution.RData") 

#################### load latent class analysis results ##################### 

load("Latent_class_solution.RData") 

#################### factorize all categorical variable ##################### 



f_Sequence_solution <- factor(Sequence_solution) 

f_ Latent_class_solution <- factor(Latent_class_solution) 

f_background_country <- factor(background$country) 

#################### using Netherland as reference country ##################### 

f_background_country <- relevel(f_background_country, ref = "13") 

#################### using traditional as reference cluster ##################### 

f_Sequence_solution <- relevel f_Sequence_solution, ref = "3") 

#################### using traditional as reference cluster ##################### 

############# perform multinomial logistic regression on cluster solution ########## 

glm.fit.sa=multinom(country  ~ f_Sequence_solution, data= f_Sequence_solution) 

################################### calculate BIC 

#################################### 

BIC(glm.fit.sa) 

######################### Predict probability ################################## 

dses <- data.frame(c("1", "2", "3", "4", "5", "6")) ###create a 6 –cluster dataset for 

sequence analysis 

names(dses) <- "sequence_solution" 

predict(glm.fit.sa, newdata = dses, "probs")



 

 

Figure 1. A representation of a nomological network surrounding a life course typology



 

 

 
(a) 

 
 

(b) 
 
Figure 2. Sequence Index plot (a) and Sequence Medoid plot (b) of the OM-6 solution



 

 
     (a)          (b) 

Figure 3. Sequence Index plot (a) and Sequence Model State plot (b) of the LCA-6 solution  



 



 

 

    (a)          (b) 

Figure 4. Sequence Index plot (a) and Sequence Model State plot (b) of the LCA-7 solution.



 

 
Figure 5. Percentage of respondents in the four large clusters or classes of OM-6, LCA-6 
and LCA-7 
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(a) 

 

(b) 

Figure 6: Predicted probabilities of “no education after age 15” using a 
multinomial logistic regression model for (a) the LCA-6 solution and (b) the LCA-
7 solution  
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Table 1. Definition of social background variables used in the typology comparison 

Abbreviation Meaning 

Edu1 No education after age 15 

Edu2 0-3 years of education after age 15 

Edu3 3-5 years of education after age 215 

Edu4 5+ years  of education after age 15 

Pardiv0 Parents not divorced 

Pardiv1 Parents divorced 

Pardiv3 Parents’ divorce not known 

Reli0 Not religious 

Reli1 Catholic 

Reli2 Protestant 

Reli3 Other religion 

Reli4 Religion unknown 
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Table 2. Number of respondents per country and percentage of the respondents per category of the social background variables 

 Region edu1 edu2 edu3 edu4 pardiv0 pardiv1 pardiv3 reli0 reli1 reli2 reli3 reli4 Nr. Resp. 

1 Estonia 9.51 48.59 41.20 0.70 66.20 22.18 11.62 47.54 0.00 41.20 11.27 0.00             284 
2 Czech Republic 5.10 23.81 50.34 20.75 85.37 14.29 0.34 -- -- -- -- --             294 
3 France 8.02 44.32 22.94 24.72 87.53 10.91 1.56 -- -- -- -- --             449 
4 New Zealand -- -- -- -- -- -- -- -- -- -- -- --             460 
5 Hungary 21.58 30.56 25.85 22.01 85.04 14.53 0.43 39.10 47.65 8.12 3.21 1.92             468 
6 Latvia 0.85 22.67 39.41 37.08 77.12 19.07 3.81 31.78 20.55 17.37 26.69 3.60             472 
7 Lithuania 1.17 15.37 33.46 50.00 80.54 18.09 1.36 8.17 80.93 0.78 8.56 1.56             514 
8 Slovenia 18.02 20.14 32.69 29.15 92.40 7.42 0.18 21.02 68.90 0.18 8.66 1.24             566 
9 Netherlands 4.08 35.85 22.84 37.22 85.02 9.98 4.99 39.94 34.80 19.21 5.90 0.15             661 
10 Spain 36.95 22.36 10.84 29.85 97.32 2.68 0.00 17.40 78.05 0.54 3.08 0.94             747 
11 Austria 20.88 30.05 33.51 15.56 90.03 9.44 0.53 30.72 59.18 3.59 6.38 0.13             752 
12 Canada -- -- -- -- 82.72 15.31 1.96 3.80 46.73 33.77 15.71 0.00             764 
13 Italy 30.47 15.48 18.43 35.63 97.79 2.21 0.00 8.72 90.05 0.49 0.61 0.12             814 
14 Portugal -- -- -- -- 94.38 5.18 0.44 -- -- -- -- --             908 
15 U.S.A. 50.65 0.28 8.47 40.60 75.84 24.07 0.09 8.47 29.05 49.67 12.71 0.09           2148 

The table is ordered by the total number of respondents per region 
“ --“ Data not available 
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Table 3. Values of cluster quality statistics 

Number of clusters PBC ASW HC 

2 0.48 0.34 0.21 
3 0.49 0.29 0.22 
4 0.62 0.34 0.13 
5 0.57 0.31 0.14 
6 0.63 0.35 0.10 
7 0.59 0.33 0.11 
8 0.58 0.33 0.10 
 
Note: PBC (maximal value preferred, ASW (maximal value preferred) and HC 
(minimal value preferred) 
 
 
 
 
 
 
 
Table 4. Values of CJBM statistics of all six clusters of the OM optimal solution. 
 
CJBM Cluster 1 Cluster2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7 

SA-6 0.57 0.66 0.54 0.49 0.45 0.76 NA 
SA-7 0.62 0.69 0.54 0.42 0.48 0.46 0.76 
 
 
 
 
 
 
 
 
 
Table 5. Values of latent class analysis model fit statistics: BIC 
(minimal value preferred, and relative entropy (closest to 
one value preferred) 
Number of clusters BIC*106 relative entropy 

2 3.0 0.9993 
3 2.6 0.9992 
4 2.3 0.9982 
5 2.1 0.9980 
6 2.0 0.9979 
7 1.9 0.9976 
8 1.8 0.9975 
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Table 6: Cross tabulation of LCA and SA typology solutions, values shown as percentages. 

     LCA/SA   Cohab Lmarriage Pmarriage Smothers   Single Tmarriage 
Cohab with c 4.14 0.00 0.04 0.45 0.00 1.50 
Cohab without c 3.80 3.27 0.00 0.93 1.10 0.06 
Lmarriage 0.12 13.03 0.00 0.11 0.17 3.62 
Pmarriage 0.01 0.00 17.88 0.30 0.00 3.02 
Smothers 0.75 0.08 0.32 6.46 0.00 0.96 
Single 0.00 2.08 0.00 0.01 14.34      0.00 
Tmarriage 0.03 0.05 0.09 0.69 0.00 20.63 
 
Cohab = Cohabitation, Lmarriage = Late marriage, Pmarriage = pregnancy-triggered 
marriage, Smother = single mother, Tmarriage = Traditional marriage, Cohab with c = 
Cohabitation with children, and Cohab without c = Cohabitation without children 
 
 
 
 
 
 
 
 
 
Table 7. BICs of SA (OM 6 and OM 7) and LCA (LCA 6 and LCA 7), based on multinomial logistic 
regression models 

 Education Parental divorce Religion Country 

OM 6 21612.34 8970.52 20308.92 51758.54 
OM 7 21626.74 8986.59 20333.26 51813.44 
LCA 6 21448.98 8909.06 20225.49 51583.76 
LCA 7 21441.70 8927.17 20230.11 51442.98 
 


