[bookmark: _GoBack]Supplementary figure 1.
Illustration of link between within-class variance and entropy
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Supplementary figure 2: Bias comparison between one-step, Modal ML (robust) and Proportional ML (robust) estimation methods. 
Parameter percentage bias = 100%*((estimate – true-value)/ true-value)

	First comparison
Effect of covariate Z on class 1 relative to class 3.
True log-odds ratio = 0.649
	Second comparison
Effect of covariate Z on class 2 relative to class 3.
True log-odds ratio = 0.351
	Third comparison
Effect of covariate Z on class 1 relative to class 2.
True log-odds ratio = 0.298

	
	
	


●: One-step		Δ: Modal ML (robust)		×: Proportional ML (robust)

Supplementary appendix 3. Further estimation details


We have a latent variable X consisting of T classes, K class indicators represented by the response vector Yi and covariates Zi with i indexing respondents from 1,…,N. Here we consider the case where Yi are categorical so that multinomial parameters describe the relationship between X and Yk. 

	(a) Unconditional latent class model
	(b) Conditional latent class model
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Unconditional latent class model


With the general latent class model, the class indicators are assumed to be independent when conditioning on latent X, enabling P(Yi | X=t) to be simplified.  However this assumption is not essential as one may instead model the within-class dependence among the Yi for instance in Growth Mixture Modelling where a latent growth model (multilevel model) is used to further explain the inter-relationship between the Yi.

Of interest is the class distribution described by P(X = t), and multinomial parameters P(Yik | X=t) where k indexes the class-indicators. These are obtained through ML estimation, maximising a log-likelihood function based on logP(Yi).


Conditional latent class model (one-step model)


For a set of covariates Zi. Again conditional independence is a standard assumption such that not only are the Yi assumed independent but Zi are assumed independent of Yi when conditioning on X. ML estimation permits estimation of additional multinomial parameters relating Zi to X in addition to P(X = t) and P(Yik | X=t) obtained as in the unconditional approach above.


Output from step-one of the three-step approach

From the parameters obtained from an unconditional model, the class-assignment probabilities  can be derived.  These are output as standard from both Latent Gold and Mplus. The table below shows example values from the empirical example (conduct problems), along with the covariate (sex) which was not used in the estimation of the model.

+-------------------------------------------------------------+
| id      sex   P(X=1|Yi)   P(X=2|Yi)   P(X=3|Yi)   P(X=4|Yi) |
|-------------------------------------------------------------|
|  1     Male       .205         .132           0        .662 |
|  2     Male       .773         .089        .133        .004 |
|  3   Female       .007         .647           0        .345 |
|  4   Female       .001          .01           0        .989 |
|  5   Female       .016          .01        .974           0 |
+-------------------------------------------------------------+


Step two

In step-two of the three-step approach the class assignment probabilities from the unconditional model are used to assign each respondent to a class. This assigned membership is denoted Wi for respondent i. In addition to this classification we also derive weights from the class-assignment probabilities.


Resulting dataset from step-two (Modal Assignment)

Class assignment W is simply the class for which P(X=t|Yi) was greatest. This is equivalent to using the following weights:  = 1 if  is largest, and  = 0. For instance, for subject 1, class 4 has a weight of 1 and classes 1, 2 and 3 have a weight of zero.

+-----------------------------------------------------------------+
| id      sex   P(X=1|Yi)   P(X=2|Yi)   P(X=3|Yi)   P(X=4|Yi)   W |
|-----------------------------------------------------------------|
|  1     Male       .205        .132           0        .662    4 |
|  2     Male       .773        .089        .133        .004    1 |
|  3   Female       .007        .647           0        .345    2 |
|  4   Female       .001         .01           0        .989    4 |
|  5   Female       .016         .01        .974           0    3 |
+-----------------------------------------------------------------+




Resulting dataset from step-two (Proportional Assignment)


The dataset is stacked as shown below.  Variable W, which simply indexes the classes, will form the dependent variable in any subsequent analysis. Proportional assignment uses the class membership probabilities themselves as weights, hence .

+-----------------------------------------+
| id      sex   P(X=t|Yi)   P(W=s|Yi)   W |
|-----------------------------------------|
|  1     Male        .205       .205    1 |
|  1     Male        .132       .132    2 |
|  1     Male           0          0    3 |
|  1     Male        .662       .662    4 |
|-----------------------------------------|
|  2     Male        .773       .773    1 |
|  2     Male        .089       .089    2 |
|  2     Male        .133       .133    3 |
|  2     Male        .004       .004    4 |
|-----------------------------------------|
|  3   Female        .007       .007    1 |
|  3   Female        .647       .647    2 |
|  3   Female           0          0    3 |
|  3   Female        .345       .345    4 |
+-----------------------------------------+


We note a similarity between Proportional Assignment and the “Pseudo-Class Draws” (PCD) method. In contrast to Proportional Assignment which incorporates class-assignment probabilities through weights in what is referred to as a “soft partitioning” of the data, PCD uses a “hard partitioning” by assigning each individual to a class on the basis of their own probabilities. Multiple draws are made in this way to maintain the uncertainty in class-assignment as shown below.

+---------------------------------------------------------------+
| id     sex     P1     P2     P3     P4    draw1  draw2  draw3 |
|---------------------------------------------------------------|
|  1    Male   .205   .132      0    .662       2      1      4 |
|  2    Male   .773   .089   .133    .004       1      1      3 |
|  3  Female   .007   .647      0    .345       4      2      2 |
|  4  Female   .001    .01      0    .989       4      4      4 |
|  5  Female   .016    .01   .974       0       3      3      1 |
+---------------------------------------------------------------+

The step-three multinomial regression model is then estimated repeatedly with the results pooled using Rubin’s rules. Given a sufficient number of datasets, regression parameters obtained through this method would be expected to equal those from Proportional Standard, whilst SE’s would be larger due to the additional source of uncertainty induced through the sampling step. The PCD approach is available in Mplus and uses 25 such draws. We refer the reader Clark & Muthén (2009) for further details. 


The matrix of classification errors


Assigned class membership W will be imperfectly related to latent X.  The D matrix, derived through an application of Bayes’ rule describes the relationship between W and X:





[Vermunt (2010) shows that it will typically be adequate to base this calculation on observed response patterns Yi rather than all possible response patterns.]

Given a particular assignment rule and assignment probabilities  one can calculate the individual cells of the D-matrix.  The D-matrix, or variants of it, for modal assignment at least, form part of the output in both Latent Gold and Mplus.  Alternatively, these figures can be derived from the raw assignment probabilities (Stata code is appended).

The table below shows the D-matrix for both Modal and Proportional Assignment estimated for the conduct problems example. We see that despite the fact that proportional assignment uses the assignment probabilities and hence appears to preserve more information from the first analytical step, the association between X and W is weaker, i.e. there is more measurement error created in W.


Table. Estimated D-matrix for conduct problems example

	
	D-matrix for modal assignment
	
	
	D-matrix for proportional assignment

	
	
	W
	
	
	
	W

	
	
	1
	2
	3
	4
	
	
	
	1
	2
	3
	4

	X
	1
	0.621
	0.055
	0.300
	0.025
	
	X
	1
	0.565
	0.119
	0.268
	0.048

	
	2
	0.125
	0.541
	0.251
	0.082
	
	
	2
	0.171
	0.483
	0.237
	0.109

	
	3
	0.013
	0.011
	0.976
	0.000
	
	
	3
	0.058
	0.036
	0.906
	0.000

	
	4
	0.076
	0.092
	0.001
	0.832
	
	
	4
	0.085
	0.134
	0.002
	0.778



Both matrices above describe the relationship between the derived classification W and the unmeasured latent-class variable X.  As a consequence the third-step of the bias-adjusted three-step method can be applied in other circumstances such as where a diagnostic tool is used or some quantity is measured on a biological sample and external information (such as sensitivity and specificity) is available regarding the accuracy of the measurement.


Long-hand implementation of Modal ML in Latent Gold

As demonstrated on page 464 of Vermunt (2010), the Modal ML1 model can be estimated Latent Gold as follows:

variables
   dependent W nominal;
   independent sex nominal coding=2;
   latent X nominal 4 coding=3;

equations
   X <- 1 + sex;
   W <- (D~wei) 1 | X;
   D = {0.621    0.055    0.300    0.025
        0.125    0.541    0.251    0.082
        0.013    0.011    0.976    0.000
        0.075    0.092    0.001    0.832};

Here the D-matrix is used to define the relationship between the modal-class variable W and latent X. Further structural parts of the model can then involve error-free X rather than W.  The above model might be extended e.g. to regress X on a later outcome, or to incorporate other error-prone measures.

Since Latent Gold version 5.0 some steps have been automated. The D-matrix is calculated directly from the class-assignment probabilities and does not need to be stated in the syntax. 


Long-hand implementation of Modal ML in Mplus

As we have shown, estimation in Latent Gold uses the D-matrix directly, however to estimate the model in Mplus we must convert the D-matrix into a series of logits.



Where k is the dimension of the D-matrix (i.e. the number of classes). Once again, since the release of Mplus 7.0 this matrix of logits has been given as additional output as shown below, however this is also obtainable from the class assignment probabilities (see appended code).

Logits for the Classification Probabilities for the Most Likely Latent Class Membership (Row) by Latent Class (Column)

              1        2        3        4

    1      3.221    0.789    2.500    0.000
    2      0.421    1.882    1.111    0.000
    3      6.844    6.722   11.190    0.000
    4     -2.401   -2.205   -6.976    0.000


The third-step of the bias-adjusted three-step method can now be applied manually in Mplus. This requires a dataset consisting of the covariate of interest and modal-class assignment W.

Consistent with the Latent Gold approach, a 4-class nominal latent variable X is defined and through the use of logit parameter constraints its relationship to the observed modal-class variable W is fixed. Latent X is then regressed on the covariate using multinomial regression. Since Mplus 7.1 this method has been automated, using the auxiliary command to perform all three-steps within a single run, however it can sometimes be useful to take the manual approach as it affords greater flexibility. 


Variable:
  Names are sex w;
  usevariables = sex w;
  nominal = w;
  class = x(4);

Analysis:
  type = mixture;

Model:
  %overall%
  x on sex;

  %x#1%
  [w#1@3.221 w#2@0.789 w#3@2.500];

  %x#2%
  [w#1@0.421 w#2@1.882 w#3@1.111];

  %x#3%
  [w#1@6.844 w#2@6.722 w#3@11.190];

  %x#4%
  [w#1@-2.401 w#2@-2.205 w#3@-6.976];



Stata code to derive Proportional Assignment D-matrix


Note – slight alterations required if X does not consist of 4 classes. For this example the class assignment probabilities were named con_p1, …, con_p4.


use "cprobabilities.dta", clear
	
* determine distribution for X
*******************************
matrix dist_x = [1 \ 1 \ 1 \ 1]
forvalues t = 1/4 {
	qui total con_p`t'
	matrix dist_x[`t', 1] = e(b)
	}
matrix list dist_x

* determine constituents of numerator
******************************************
forvalues x = 1/4 {
	gen prob_w_is`x'_given_y = con_p`x'
	gen prob_x_is`x'_given_y = con_p`x'
	}

* calculate quantity for each subject
******************************************
forvalues t=1/4 {
	forvalues s = 1/4 {
	gen temp_w`s'_x`t' = (prob_x_is`t'_given_y)*(prob_w_is`s'_given_y)
	}
	}
	
* derive D by summing across subjects
* for D matrix, rows correspond to X and columns to W
********************************************************
matrix D = [1,2,3,4\1,2,3,4\1,2,3,4\1,2,3,4]
forvalues t=1/4 {
	forvalues s = 1/4 {
	qui total temp_w`s'_x`t'
	matrix D[`t',`s'] = e(b)/dist_x[`t',1]
	}
	}
matrix list D



Stata code to derive Modal Assignment D-matrix / logit constraints


use "cprobabilities.dta", clear

* determine distribution for X
*******************************
matrix dist_x = [1 \ 1 \ 1 \ 1]
forvalues t = 1/4 {
	qui total con_p`t'
	matrix dist_x[`t', 1] = e(b)
	}
matrix list dist_x

* determine constituents of numerator
******************************************
forvalues class = 1/4 {
	gen prob_w_is`class'_given_y = cond(con_modc==`class',1,0)
	gen prob_x_is`class'_given_y = con_p`class'
	}

* calculate quantity for each subject
******************************************
forvalues t=1/4 {
	forvalues s = 1/4 {
	gen temp_w`s'_x`t' = (prob_x_is`t'_given_y)*(prob_w_is`s'_given_y)
	}
	}
	
********************************************************
* derive D by summing across subjects
* for D matrix, rows correspond to X and columns to W
********************************************************
matrix D = [1,2,3,4\1,2,3,4\1,2,3,4\1,2,3,4]
forvalues t=1/4 {
	forvalues s = 1/4 {
	qui total temp_w`s'_x`t'
	matrix D[`t',`s'] = e(b)/dist_x[`t',1]
	}
	}
matrix list D
	
***********************************************
* logit constraints for modal assignment
***********************************************
local mat_dim = 4
matrix logit_modal = [1,2,3,4\1,2,3,4\1,2,3,4\1,2,3,4]
forvalues x=1/`mat_dim' {
	forvalues y = 1/`mat_dim' {
	matrix logit_modal[`y',`x'] = D[`y',`x']/D[`y',`mat_dim']
	matrix logit_modal[`y',`x'] = ln(logit_modal[`y',`x'])
	}
	}
matrix list logit_modal
One-step	0.979174	0.911746	0.848852	0.794656	0.747752	0.706836	0.670896	0.63921	0.61125	0.5866	-0.215292259535431	-0.387471603664996	-0.767314159404341	-1.057678134386978	-1.333802997218643	-1.581449635748351	-1.762115490719902	-1.867969050450225	-1.916809205128058	-1.950726770271686	Modal ML2	0.979174	0.911746	0.848852	0.794656	0.747752	0.706836	0.670896	0.63921	0.61125	0.5866	-0.268404147858569	-0.394961376656417	-0.619255871258538	-1.024586437748114	-0.68774600070471	-1.804832827172815	-2.344609090591883	-2.459176986958615	-2.674187580438304	-2.619822650245892	Proportional ML2	0.979174	0.911746	0.848852	0.794656	0.747752	0.706836	0.670896	0.63921	0.61125	0.5866	-0.247501131220941	-0.411649616097347	-0.767826767441775	-1.0359492492446	-1.290003488242241	-1.50638103648843	-1.637067607810052	-1.66329605239214	-1.597796136497679	-1.462353701717622	Entropy

Percentage bias


One-step	0.979174	0.911746	0.848852	0.794656	0.747752	0.706836	0.670896	0.63921	0.61125	0.5866	-0.993021019934636	-0.728690191015138	-0.343791521412973	-0.0179868476749971	0.306544104087442	0.631108574849257	0.935259975003405	1.234752234247099	1.586467094487058	2.066291570264742	Modal ML2	0.979174	0.911746	0.848852	0.794656	0.747752	0.706836	0.670896	0.63921	0.61125	0.5866	-1.002305782756187	-0.804510167557865	-0.864710290400808	-0.389042170543245	-0.800689001631311	0.998946073779334	1.674789657789489	1.360247367835056	1.859646939236488	1.684644243600068	Proportional ML2	0.979174	0.911746	0.848852	0.794656	0.747752	0.706836	0.670896	0.63921	0.61125	0.5866	-1.038405745062334	-0.799649912651272	-0.46824756602089	-0.205492130071103	0.0440568201325087	0.278254068631188	0.468239756979616	0.619779153067002	0.787038959852242	1.037727556033945	Entropy

Percentage bias


One-step	0.979174	0.911746	0.848852	0.794656	0.747752	0.706836	0.670896	0.63921	0.61125	0.5866	-0.572539451877584	-0.544209258889713	-0.572770404537809	-0.580160889665089	-0.580330254949251	-0.56511817306229	-0.523100185744942	-0.442744056829879	-0.307590560064885	-0.105476188678018	Modal ML2	0.979174	0.911746	0.848852	0.794656	0.747752	0.706836	0.670896	0.63921	0.61125	0.5866	-0.605519491758043	-0.583086290027966	-0.731989168498483	-0.732635835947121	-0.739610606285988	-0.516926051294869	-0.498311266880556	-0.704736754591669	-0.591600744768341	-0.642579695302507	Proportional ML2	0.979174	0.911746	0.848852	0.794656	0.747752	0.706836	0.670896	0.63921	0.61125	0.5866	-0.61080060925523	-0.589876298238646	-0.63020063271433	-0.654481455726227	-0.677207197492576	-0.686614669185838	-0.670001474493484	-0.614557439194932	-0.502329843168497	-0.313949456643145	Entropy

Percentage bias


